l.)

Check for
Updates

Rasco: Resource Allocation and Scheduling Co-design for
DAG Applications on Multicore

ABIGAIL EISENKLAM, University of Pennsylvania, United States

ROBERT GIFFORD, University of Pennsylvania, United States

GEORGIY A BONDAR, University of California Santa Cruz, United States

YIFAN CAl, University of Pennsylvania, United States

TUSHAR SIAL, Iowa State University, United States

LINH THI XUAN PHAN, University of Pennsylvania, United States

ABHISHEK HALDER, Iowa State University, United States and University of California Santa Cruz, United
States

As multicore hardware becomes increasingly prevalent in real-time embedded systems, traditional scheduling
techniques that assume a single worst-case execution time for each task are no longer adequate, as they
fail to account for the impact of shared resources—such as cache and memory bandwidth—on execution
time. When tasks execute concurrently on different cores, their execution times can vary substantially with
their allocated resources. Moreover, the instruction rate of a task during a job execution varies with time,
and this variation pattern differs across tasks. Therefore, to improve performance it is crucial to incorporate
the relationship between the resource budget allocated to each task and its time-varying instruction rate in
task modeling, resource allocation, and scheduling algorithm design. Yet, no prior work has considered the
fine-grained dynamic resource allocation and scheduling problems jointly while also providing hard real-time
guarantees.

In this article, we introduce a resource-dependent multi-phase timing model that captures the time-varying
instruction rates of a task under different resource allocations and that enables worst-case analysis under
dynamic allocation. We present a method for constructing estimates of such a model based on task execution
profiles, which can be obtained through measurements. We then present Rasco, a co-design technique for
multicore resource allocation and scheduling of real-time DAG applications with end-to-end deadlines. Rasco
leverages the resource-dependent multi-phase model of each task to simultaneously allocate resources at a fine
granularity and assign task deadlines. This approach maximizes execution progress under resource constraints
while providing hard real-time schedulability guarantees. Our evaluation shows that Rasco substantially
enhances schedulability and reduces end-to-end latency compared to the state of the art.

This work was supported in part by NSF grants CNS-1750158, CNS-1955670, CNS-2111688, and CCF-2326606.

Authors’ Contact Information: Abigail Eisenklam, University of Pennsylvania, Philadelphia, United States; e-mail: aci@seas.
upenn.edu; Robert Gifford, University of Pennsylvania, Philadelphia, United States; e-mail: rgif@seas.upenn.edu; Georgiy A
Bondar, University of California Santa Cruz, Santa Cruz, United States; e-mail: gbondar@ucsc.edu; Yifan Cai, University
of Pennsylvania, Philadelphia, United States; e-mail: caiyifan@seas.upenn.edu; Tushar Sial, Iowa State University, Ames,
United States; e-mail: tsial@iastate.edu; Linh Thi Xuan Phan, University of Pennsylvania, Philadelphia, United States; e-mail:
linhphan@cis.upenn.edu; Abhishek Halder, Iowa State University, Ames, United States and University of California Santa
Cruz, Santa Cruz, United States; e-mail: halder.abhishek@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1539-9087/2025/09-ART153

https://doi.org/10.1145/3761814

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

https://orcid.org/0000-0001-7462-667X
https://orcid.org/0000-0003-2937-6215
https://orcid.org/0009-0008-1369-2495
https://orcid.org/0009-0003-8125-1054
https://orcid.org/0009-0003-3864-1217
https://orcid.org/0000-0002-3458-7511
https://orcid.org/0000-0002-1509-5853
mailto:permissions@acm.org
https://doi.org/10.1145/3761814
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3761814&domain=pdf&date_stamp=2025-09-26

153:2 A. Eisenklam et al.

CCS Concepts: » Computer systems organization — Embedded software; Real-time system architec-
ture; Multicore architectures; « Theory of computation — Parallel computing models;

Additional Key Words and Phrases: Real-time scheduling, resource allocation, DAG scheduling

ACM Reference Format:

Abigail Eisenklam, Robert Gifford, Georgiy A Bondar, Yifan Cai, Tushar Sial, Linh Thi Xuan Phan, and Abhishek
Halder. 2025. Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore. ACM
Trans. Embedd. Comput. Syst. 24, 5s, Article 153 (September 2025), 27 pages. https://doi.org/10.1145/3761814

1 Introduction

Modern real-time embedded applications are inherently complex: they consist of interconnected
tasks that depend on one another through input/output data constraints. For instance, in video
processing applications, raw video input is processed through a series of dependent tasks, such as
decoding, filtering, motion detection, compression, and encoding. These applications can be natu-
rally modeled as taskgraphs—i.e., directed acyclic graph (DAG) tasks—in which nodes represent
sequential task execution and edges represent precedence constraints [24].

As resource demands grow, these applications are increasingly deployed on multicore hardware to
exploit the parallelism inherent in the DAG structure. Various multicore DAG scheduling techniques
have been developed; however, they primarily focus on CPU alone, often neglecting other shared
resources, such as the last-level shared cache (LLC) and memory bandwidth. Such negligence
can lead to unsafe schedulability results, as tasks running on different cores can interfere with each
other by concurrently accessing shared resources, causing their actual execution times to exceed
the worst-case execution time (WCET) estimated in the absence of such interference.

Recent research has begun to address this issue by developing overhead-aware scheduling and
analysis, e.g. by reducing inter-core communication [20], accounting for memory contention [6],
exploiting cache recency [32], or co-locating tasks to reduce execution time [22]. While these
approaches consider shared resources, they do not explicitly control how resources are allocated to
each task, and as a result, they still suffer from interference caused by concurrent resource accesses.

A simple solution to the interference problem is to evenly divide each shared resource among
cores and use the WCETs under this assigned resource budget in existing DAG scheduling and
analysis techniques. However, this approach overlooks the actual resource requirements of each
task, which can lead to inefficient resource utilization—something crucial for resource-constrained
embedded systems. Previous work for independent tasks [10] has shown that the resource needs of a
task vary significantly throughout its execution, particularly for data-intensive tasks, such as those
in video processing or autonomous driving applications. It has also shown that by reallocating
resources to tasks at a fine-grain (i.e., throughout a job’s execution) to match their changing
demands, we can effectively reduce latency and deadline misses [10]. However, no prior work has
been able to accurately uphold hard real-time guarantees while performing fine-grained (intra-job)
resource reallocation. Similarly, no existing DAG scheduling method allocates multicore shared
resources (e.g., cache and memory bandwidth) in conjunction with scheduling.

To bridge this gap, we propose a dynamic resource allocation and scheduling co-design approach
that exploits fine-grained variability in tasks’ resource demands while preserving schedulability
guarantees. However, several challenges must be addressed to achieve this goal. First, to effectively
adapt to fine-grained changes in tasks’ resource needs, we require a concise timing model that
captures a task’s time-varying execution speed under different resource budgets and how its speed
scales with additional resources. The model must also support WCET analysis under dynamic
budget changes to enable schedulability analysis. Such a model does not currently exist. Second,

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

https://doi.org/10.1145/3761814

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:3

Multi-Phase Model RASCO Pre-Processing RASCO
Workload Phase Deadline Calculate initial Run RAsco Check
profiling identification decomposition resource budgets algorithm schedulability
(Sec. 3.1) (Sec. 3.5) (Sec. 4.3) (Sec. 4.3) (Sec. 4.4) (Sec. 4.4)
Per Task Per Taskgraph Per Taskset

Fig. 1. Workflow of our resource allocation and scheduling co-design algorithm for DAG-based applications.

due to precedence constraints and end-to-end deadlines, resource allocation and scheduling
are interdependent. Under deadline-driven DAG scheduling, tasks’ deadlines often depend on
their WCETs [19], which in turn depend on their allocated resources. A larger task deadline
allows for a smaller resource budget, freeing up resources for other concurrent tasks; however,
it also tightens deadlines for successor tasks, increasing their resource needs. Finally, the optimal
resource budget for a task depends not only on its execution state but also on other concurrently
running tasks.

To address these challenges, we present a resource-dependent multi-phase model that captures
the time-varying execution behavior of a task under different resource budgets. This model defines
a series of execution phases, each corresponding to a distinct worst-case instruction rate, for any
given budget of shared resources. Each phase represents a segment of the task’s program with a
similar instruction rate, typically due to consistent resource usage patterns and needs. To facilitate
resource allocation between competing (i.e., concurrently executing) tasks, our model exposes the
potential improvement in the worst-case instruction rate when a task is allocated extra resources
in its current phase. This information is valuable for determining the tasks that would benefit the
most from additional resources. To demonstrate its utility in scheduling and resource allocation,
we present a measurement-based method—commonly used for WCET estimation in real-time
multicore systems [1, 10, 27]—to construct the multi-phase model.! However, this multi-phase
model can also be constructed using alternative phase identification and WCET analysis techniques
(see Section 3.5).

To leverage our proposed model, we introduce Rasco, the first fine-grained dynamic resource
allocation and scheduling co-design method for taskgraphs with schedulability guarantees. Given
a set of periodic taskgraphs with end-to-end deadlines, Rasco outputs a schedule of tasks onto
cores along with their allocated resources at each point in time. Starting with an initial resource
allocation and deadline assignment for tasks, Rasco uses the multi-phase models to iteratively
distribute available resources to the tasks that benefit the most. As these tasks’ WCETs change,
Rasco recomputes task deadlines and redistributes resources. By jointly computing the deadlines
and dynamic resource budgets for tasks based on their multi-phase models, Rasco effectively
improves WCETs, reduces end-to-end latency, and maximizes schedulability.

Figure 1 shows the workflow for our approach. In summary, we make the following contributions:

— we propose a resource-dependent multi-phase timing model for real-time tasks that enables
WCET estimation under dynamic resource budget;

— we present a method for constructing the multi-phase model from task execution profiles;

— we introduce Rasco,’ a co-design algorithm for fine-grained resource allocation and sched-
uling of DAG applications that leverages the multi-phase models to improve worst-case
instruction rates, resource-use efficiency, and schedulability;

— we present a numerical evaluation of our technique based on real benchmarks;

!Prior work on DAG scheduling typically assumes that WCETs are given and uses synthetic WCETs for evaluations. Our
work goes beyond by considering real programs and incorporating a way to derive their timing models.
2Qur implementation of Rasco is available at https://github.com/abbyeisenklam/Rasco

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

https://github.com/abbyeisenklam/Rasco

153:4 A. Eisenklam et al.

— we present a prototype implementation of Rasco in a real-time operating system (RTOS)
to demonstrate its applicability in practice; and

— we evaluate the runtime overheads of Rasco using this prototype, as well as discuss a way to
incorporate such overheads into the Rasco algorithm to ensure safe schedulability.

2 Related Work

CPU scheduling of DAG-based taskgraphs. There exists a large body of work on scheduling
and analysis of taskgraphs on multiprocessors (see, e.g., the survey in [24] and references therein).
Prior work in this area often focuses on two directions: (1) schedulability/response time analysis
methods for a given scheduling algorithm to improve resource augmentation bounds [3, 15] or
tighten worst-case response time [12]; and (2) parallel scheduling algorithms that aim to effectively
utilize cores, reduce runtime overheads, and improve schedulability (e.g., [7, 13, 30, 31]). Many
techniques use deadline decomposition [19] and static priority assignment computed offline to
maximize parallelization. For instance, Zhao et al. [30] model DAG tasks as workload distributions
and compute an offline priority and core assignment that accumulates the workload distributions
to avoid inter-DAG interference. Sun et al. [21] rely on deep learning to statically generate edges
between tasks to compress the width of the DAG to fit the number of cores. The majority of existing
work, however, focuses on only the CPUs while ignoring other shared resources.

Resource-aware analysis and scheduling. Recent solutions have started to consider resource
interferences in DAG scheduling and analysis. For example, [20] proposes a scheduling technique
that combines tasks of a DAG into execution groups to reduce inter-core communication. Casini
et al. [6] incorporate the potential overhead due to memory contention in the schedulability analysis.
The work in [22] co-locates tasks on the same core to reduce cache overhead and improve run-time
performance. In [32], jobs of DAG tasks are assigned to cores based on a model which predicts
cache recency. Unlike our work, these techniques do not compute the resource allocation.

Multicore resource allocation. Several multicore resource allocation techniques have been
developed in recent years. For example [26, 27] propose holistic resource allocation techniques
that find the assignments of tasks, cache and memory bandwidth to cores. Closely related to our
work, DNA/DADNA [10] also exploits the workload characteristics to dynamically adapt resources
allocated to a task during an execution. These techniques, however, assume independent tasks
whose deadlines are given a priori, and DNA/DADNA also only supports soft real-time systems.
Another similar work [28] which does dynamic resource allocation and scheduling co-design (using
reinforcement learning) claims to provide hard real-time guarantees, but requires the assumption
that the execution rate of a task is constant throughout its lifetime (which we show can result in
unsafe WCET estimates in Section 3.3). We are not aware of any prior work that does fine-grained
(i.e., intra-job) dynamic resource allocation together with scheduling for taskgraphs (or independent
tasks), while ensuring hard real-time schedulability guarantees.

3 Resource-Dependent Multi-Phase Modeling of Real-Time Tasks

We first present an empirical study of real workloads under different budgets of shared resources.
Based on insights from this study, we then present a multi-phase model that succinctly captures a
task’s resource-dependent execution behavior. Once obtained (through the proposed measurement-
based approach or other techniques), the model can be used for scheduling and resource allocation.

3.1 Profiling of Real-Time Workloads on Multicore

To understand the resource-dependent timing behaviors of real-time workloads, we performed
measurements of real benchmarks on multicore hardware under various resource allocations.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:5

Setup. Our benchmarks consisted of programs and inputs taken from the PARSEC [4] and SPLASH2x
[25] benchmark suites. These benchmarks have often been used as workloads by prior work on
resource allocation (e.g., [10, 16, 29]). We used Ubuntu 20.04.6 on an Intel Xeon CPU E5-2618L v3
machine, which supports Intel’s Cache Allocation Technology (CAT) [14] for cache allocation
and MemGuard [29] for memory bandwidth allocation (see Section 6 for details on CAT and
MemGuard). The machine has 8 cores and a 20MB 20-way set-associative shared L3 cache, which is
partitioned by CAT into N, = 20 cache partitions. We divided the maximum guaranteed bandwidth
of 1.4 GB/s (measured on our machine) into N, = 20 partitions of 72MB/s each. We disabled
hyperthreading, SpeedStep, and hardware prefetching to avoid nondeterministic timing.

Measurement. To obtain the execution profile for a given task (benchmark program) under a
given budget f = (Bea, fow) Of Pea cache partitions and f,, bandwidth partitions, we pinned the
task on a dedicated core that was isolated from the OS, and assigned f., cache partitions and f,,
bandwidth partitions to that core. Using the CPU’s performance counters, we periodically measured
the number of retired instructions every 10 milliseconds throughout each run of the task. From
these measurements, we can compute the instruction rate, defined as the number of instructions
retired per millisecond, and the instruction count at which this rate is observed.

We recorded these metrics for 100 runs of each task under each possible resource budget. By
repeating the measurement process for all possible allocated budgets S (i.e., a total of (N, — 1) x
Npw = 19 x 20 = 380 different configurations of f), we obtained the complete resource-dependent
execution profile of the task. Note that we measured N, — 1 cache partitions because our CPU’s
CAT implementation limits the minimum LLC allocation to two partitions.

3.2 Results and Discussions: The Case for Phase-Based Resource Allocation

Figure 2 shows the profiling results for two example tasks, canneal and fft. From these figures, we
can identify several key observations. First, a task’s WCET depends on its resource budget. As
shown in the top horizontal axes of Figure 2(a) and (c), canneal’s WCET improves from 6.25 to 1.27
seconds when going from 2 to 10 partitions of each type. Likewise, fft improves from 1.37 to 0.48
seconds for the same increase in resources (Figure 2(d) and (f)). This decrease in execution time
is directly linked to the increase in instruction rate, as shown on the vertical axis, which can be
attributed to a reduction in LLC misses and memory bandwidth bottlenecks when allocated more
resources.

INSIGHT 1. The total execution time of a task is highly dependent on its allocated resource budget.

Next, we observe that a task’s instruction rate follows a common pattern, regardless of the
allocated resource budget. For example, fft clearly shows three distinct periods with high instruction
rates, separated by valleys with a lower rate. Intuitively, we call each period of distinct behavior a
phase of execution. As the allocated resource budget increases, the phase boundaries continue to
occur roughly at the same points in the program, but the rate of each phase varies significantly. For
instance, when fft is allocated a resource budget of (10, 10,,) instead of (2., 2p,,), the instruction
rate during the “middle” phase (between instruction counts 0.5 x 10° and 1.25 x 10°) increases
from 3 x 10° to around 5 x 10°, representing a 66% increase in the instruction rate. However, the
first phase (between instruction counts 0 and 0.4 x 10%) does not experience a rate increase with
additional resources. This leads to our second key insight.

INSIGHT 2. Different phases of the same task exhibit different levels of resource sensitivity, resulting
in different improvement in instruction rate when given the same additional resource budget.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:6 A. Eisenklam et al.

WCET = 6.25 s WCET = 3.82 s WCET = 1.27 s

\

A
2.0
1.0

0.0 1.0 2.0 3.0 4.0

2.0 B
1.0

0.0 1.0 2.0 3.0 4.0

0.0 1.0 2.0 3.0 4.0

Instruction Rate (x10°)
w
g
Instruction Rate (x109)
w
°
Instruction Rate (x10°)
w
©

Cumulative Instruction Count (x10°) Cumulative Instruction Count (x10°) Cumulative Instruction Count (x10°)
(a) canneal (2., 24,,) (b) canneal (3., 3..) (c) canneal (10,,, 10,,,)
WCET = 0.78 s

o
M

ST B

0.0

WCET = 1.37 s

A

0.0

Instruction Rate (x10°)
»

°
Instruction Rate (x10°)
'S
°
Instruction Rate (x10°)
IS
°

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Cumulative Instruction Count (x10°) Cumulative Instruction Count (x10°) Cumulative Instruction Count (x10°)
(d) ﬁt (ans 2bw) (e) ﬁct (3cw 3bw) (f) ﬁct (locw lobw)

Fig. 2. Instruction rate (number of instructions retired per ms) for two benchmarks, canneal (top) and fft
(bottom), given three different resource budgets (2., 2,,), (3cs> 3pw)> and (10,,, 10,,,) shown from left to right.
Each data point shows the instruction rate (obtained from profiling) at a specific point in the program (the
cumulative instruction count). Each graph plots data points across all 100 runs.

Next, not all tasks have clearly defined phase boundaries. Unlike fft where the valleys indicate
clear start and end points between phases, canneal shows a much more gradual change in the
instruction rate during its execution.

INsiGHT 3. The instruction rate pattern differs across tasks.

Finally, the instruction rate of a task often does not increase linearly with the number of resource
partitions allocated. Instead, many tasks experience a significant increase in instruction rate only
after a certain critical threshold of resource budget is reached (e.g., an amount sufficient to hold their
working set). For example, with canneal, there is only a small increase in the instruction rate going
from (2.4, 2p,,) to (3cqs 2psy) (the WCET decreases by 0.38s in this case), but a much larger increase
going from (3.4, 2py,) to (3¢a 3pw) (@ WCET decrease of 2.05s). In contrast, with fft, going from
(2¢as 2pv) t0 (2¢4, 3pyy) results in the same reduction in WCET as going from (2.4, 2py,) t0 (3cas 3pw)s
indicating a different critical threshold than canneal.

INSIGHT 4. The instruction rate of a task does not scale linearly with the resource budget allocated,
and each task has a different critical threshold of resources at which the rate improves significantly.

These insights underscore the need for a phase-based model that accurately captures a task’s
time-varying, resource-dependent execution behavior.

3.3 Challenges of Achieving Timing Guarantees Under Dynamic Resource Allocation

Fine-grained dynamic allocation of shared multicore resources—e.g., shared caches and memory
bandwidth—has been explored in recent work, but only for independent tasks in soft real-time
systems [10]. Our goal is to enable such allocation with worst-case guarantees.

At first glance, it might seem that we could assume a constant worst-case instruction rate for
each resource budget and compose the overall WCET from these rates. However, this approach
is not safe: the WCET estimate based on constant rates can be smaller than the measured WCET
with dynamic resource allocation! To illustrate this issue, Figure 3 shows the measured worst-case
instruction rates of fft. In Figure 3(a), the red and blue solid lines represent the cumulative
instruction count over time when assuming a constant instruction rate for static budgets (10,4, 10,,)

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:7

2.5 2.5
! ! - —— WCET-based rate (10ca, 1054) i
N 2 .. g [
o 1 1 (-} True worst-case rate (105, 10p,) i
D20 i 1 % 2:07 — WCET-based rate (2ca, 25u) A
- : : ~ =+ True worst-case rate (2ca, 2pw) : :
€ 1 1 t ' s
315 t 1 315 n t t
o ! 1 o Laet 1 1
o I 1 o v 1 1
| R !

S1.0 : i s1o (BN
v ! ——- WCET (1045, 105) § 1|1 “actual WCET
Zos ! — WCET-based rate (10, 105,) Eos [
n -
< : WCET (2car 2u) < resource allocation :'\ : .
- 1 —— WCET-based rate (2¢, 2pn) - updates | eptimated WCET

0 1 1 o 1 1

0075% 0.2 0.4 0.6 0.8 1.0 1.2 14 0075% 0.2 0.4 0.6 0.8 1.0 1.2
Time (s) Time (s)
(a) Constant rates of fft based on WCETs (b) Rate change with dynamic resource allocation

Fig. 3. Unsafe WCET estimation when assuming a constant instruction rate under each resource budget.

and (2.4, 2p), respectively. The dashed vertical lines indicate when the task completes its execution
under these static resource budgets (i.e., corresponding to their measured WCETs). In Figure 3(b),
the actual fine-grained instruction count of the task under dynamic resource budget is shown as
the dotted curve, where the red portion corresponds to the initial execution of fft under (10,4, 10,,)
and the blue corresponds to the subsequent execution after changing the resource budget to
(2¢4s 2pw)- As shown in this figure, the overall WCET estimated by composing the assumed constant
rates for the two resource budgets (the time at the vertical purple dashed line) is much smaller
than a measured completion time (the time at the vertical green dashed line). Thus, we cannot
safely estimate the WCET under dynamic resource allocation by assuming a constant rate for each
resource budget.

Another approach is to use the WCET under the minimum budget the task ever receives. However,
this will result in an overly-conservative WCET. In our example, the measured WCET under the
minimum budget is almost 1.4 seconds (Figure 3(a)), which is much larger than the measured
WCET under dynamic resource allocation (just above 1 second, in Figure 3(b)). To avoid overly-
conservative WCETs, we must consider the fine-grained instruction rates under each resource

budget.

Basic idea. We model a task’s execution under a given resource budget as a series of phases,
each with its own worst-case instruction rate. Then, when the resource budget allocated to a task
changes, we can simply lookup the worst-case rate for the current phase under the new resource
budget to understand the worst-case behavior of the task under dynamic resource allocation.

To illustrate this, Figure 4(a) shows (in blue) the instruction rate of canneal, measured over
100 profiling runs, under a dynamic resource allocation. In these runs, canneal was allocated an
initial budget of (2.4, 2p,,), which was increased to (7., 7p,) at instruction count 2,035,574,822, and
subsequently reverted to (2.4, 2p,,) at instruction count 3,091,669,630. Importantly, we observe that
the instruction rate of canneal after its resource budget changes to (7.4, 7p,,) closely matches the
rate measured when running canneal under the constant resource budget of (7.4, 7p,,) (shown in
yellow). Similarly, when the budget reverts to (2., 2p,,), its instruction rate closely matches the
rate measured under the constant resource budget of (2.4, 2p,,) (shown in pink). The same trend
holds for the inverse budget assignment, (7.4, 7pw) = (2cas 2pw) = (Teas Tpw)s as illustrated in
Figure 4(b).

Therefore, after accounting for the transient effect of resource reconfiguration on the execution
rate (e.g., the overhead associated with filling additional cache partitions; see Section 6 for further
discussion), we can obtain the worst-case rates under a dynamic resource budget by composing the
phase-based worst-case rates under the individual constant resource budgets.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:8 A. Eisenklam et al.

~ 5.0 ~ 5.0
8 Constant budget (2, 25w) "o Constant budget (7.5, 7pw)
')'(' 4.0 Constant budget (7., 75w) ';: 4.0 « Constant budget (2ca, 25w)
‘; (2ca, 26w) = (Tca, Tow) = (2ca, 26w) ‘; o (Tca, Tow) = (2ca, 26w) = (Tca, Tow)
£ 30 'l £ 30 M
3 M 4 .
c n e % N
S 20 i S 207 ; "
F] = s
v & v o
2 10, § 2 1o
- -
n "]
c c
= 0.0 = 0.0
0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0
Cumulative Instruction Count (x10°) Cumulative Instruction Count (x10°)
(a) (Zm’ 2bw) - (7ca’ 7bw) - (zca’ wa) (b) (7ca’ 7bw) - (zca’ 2bw) - (7ca’ 7bw)

Fig. 4. Profiled instruction rates of canneal under dynamic (blue) vs. constant (yellow and pink) budgets.

3.4 Resource-Dependent Multi-Phase Model for Real-Time Tasks on Multicore

Let f = (Bea» Pow) denote an allocated resource budget, which is a vector of the number of shared
cache partitions and the number of bandwidth partitions. For example, § = (2, 5p\,) represents
a resource budget with 2 cache and 5 bandwidth partitions. Then, each task 7’s timing behavior
under a resource budget ff can be modeled as

®T|ﬁ = (91’929""0]()’ (1)

where k is the number of consecutive execution phases that capture non-negligible changes in the
instruction rate of the task. Notice that ©,|4 is conditional on an allocated budget f, since we know
the phase characteristics are highly dependent on f.

Each individual phase is characterized by 6; = [6}, 60,6/, GiA], where 07 and 6] specify the start
and end instruction of the phase, and Hir specifies the worst-case instruction rate (i.e., the minimum
number of instructions retired per millisecond) of the task in this phase. By definition, 6] is 7’s
total number of instructions, 6 = 0, and 8¢ = 6%, for all 1 < i < k. Lastly, 6 is a lookup table
expressing the potential to increase the worst-case instruction rate of 7in its current phase given
the remaining resource budget available for allocation. (More details on QiA are in Section 3.5.) Next,
we describe a method for constructing the model from execution profiles, such as those in Figure 2.

3.5 Constructing Multi-Phase Models

Phase identification and WCET analysis. The multi-phase model requires identifying program
phases and determining the worst-case instruction rate for each phase under each resource budget.
To construct this model, any existing phase identification technique and WCET analysis—provided
that it is deemed safe by the system designer—may be used. For example, phases can be identified
via program inspection, clustering on profile data, or changepoint detection (as done in this work).
Similarly, a wide range of WCET analysis techniques exist, including static analysis, measurement-
based timing analysis, and hybrid approaches (see [1] for a survey of each category and a discussion
of their tradeoffs). Regardless of the techniques employed, the worst-case instruction rate of each
phase is simply the smallest instruction rate achievable within that phase.

In this work, we employ measurement-based timing analysis—commonly used in multicore real-
time systems [1]—to estimate the worst-case instruction rate of each phase. Although measurement
alone cannot enumerate all paths through an arbitrary program, it can be used to estimate the
WCET of a deterministic path when shared resources are partitioned. Therefore, we fixed the
worst-case execution path (WCEP) in each benchmark using deterministic inputs and estimated
the WCET of this path via measurement.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:9

5.0

PN 3 g

X 4.0 EI’I i — IWorst—Case Rate ;. 6.0

'] | "

© 3.0 1y : : =

] ud ! ! T 40

3 1] e & Phase 14

6 2.0 s c

B i 2

4'-':'1'0 -i i ‘gz.o Phase Boundari

] -gh ! Phase 14 " < -- Phase Boundaries

c HHH i | Phase 15 i Worst-Case Rate

= 0.0 —H - ; - £ 4 i 5

00 05 1.0 1.5 20 25 3.0 35 4.0 0.0 o0 o5 1o s 20

Cumulative Instruction Count (x10°) ’ Cumula;tive Instrl;ction Cour;t (x109) !
(a) canneal (3.4, 34, k = 20) (b) fft (3,45 3pw» k = 25)

Fig. 5. Results of changepoint detection for canneal and fft with k = 20 and k = 25, respectively. The worst
case rate of each phase is shown in green and the boundary between each phase is shown in red.

For programs with nondeterministic, input-dependent execution paths, static analysis must first
be used to identify the WCEP (i.e., the longest path in the control flow graph—see [1]). To use the
multi-phase model for such programs, one must then verify that this path holds over all resource
budgets. If the WCEP depends on the resource budget, then under dynamic resource budget, we
cannot safely compose the rates from multiple WCEPs (c.f. Section 3.3). This requirement can
be verified using prior work that incorporates allocations of shared resources into multicore
timing analysis [11, 17]. Once the WCEDP is identified, our proposed measurement-based approach
may be used to construct the multi-phase model. As we will show in Section 6, this approach—
combined with runtime overhead accounting—enables worst-case schedulability guarantees
with Rasco.

Changepoint detection for identifying phases. For each task 7 and resource budget f, the
execution profile records the instruction rate and the cumulative instruction count at which this
rate is observed (as shown in Figure 2). Our goal is to construct a series of execution phases
Oyp = (61,05, ...,) for each r under each resource budget /3 by identifying consecutive segments
of its profile that display similar instruction rates. To achieve this, we use changepoint detection
[23], an approach commonly used to detect the time points where certain properties change in
time-series data. In our case, we use it to identify the cumulative instruction count values at which
the rate changes significantly. Specifically, we use the kernel changepoint detection method [2]
from the ruptures [23] library with an 12 kernel. Given a number of changepoints as input, the
12 kernel aims to minimize the least-squared deviation of the measured rates between any two
changepoints. Therefore, the output of this algorithm is a series of k phases (6;, 05, ... , 0;), where the
ith phase 6, is defined by a start and an end instruction (6 and 6}, respectively), and the instruction
rate changes minimally within each phase. Since the rate changes minimally in each phase, the
worst-case rate 6/ is a tight lower bound on the task’s instruction rate in phase 6,.

Figure 5 shows the results of applying the algorithm to canneal and fft. We can observe that
it successfully identifies the instruction counts at which the instruction rate changes (indicated
by vertical red dotted lines), and that the worst-case instruction rate provides a relatively tight
lower bound on the instruction rates across all profiling runs in each phase (horizontal green
lines).

Choosing the number of phases. The number of phases k introduces a tradeoff between the
multi-phase model’s precision and the runtime of our resource allocation algorithm. Intuitively, a
smaller value of k results in greater variation in the instruction rate in each phase, leading to a looser
(i.e., more conservative) lower bound on the instruction rate. This can in turn affect the precision of
our resource allocation and scheduling co-design algorithm. Conversely, a larger k increases the

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:10 A. Eisenklam et al.

number of phases, and thus, the runtime of our resource allocation algorithm. Therefore, we aim to
choose the smallest possible k that still maintains tight worst-case rates for the phases.
To empirically assess the marginal benefit of increasing k, we first define the metric WCET
Amplification Ratio for a fixed k as follows:
phase-based WCET

WCET Amplification Ratio = . (2)
profiled WCET

Here, the phase-based WCET of a task 7 with multi-phase model ©;/5 = (6}, 65, ...,) is given by

k rpe_ps
phase-based WCET = Z (! o7 :) . (3)
i=1

1

For each phase 6; of 7 under resource budget f, we find the WCET in that phase using (6; —67)/6].
We then sum this value for all phases (6, ..., 6¢) to obtain the phase-based WCET under resource
budget f. This sum is then divided by the observed WCET across all runs of the task under resource
budget f, yielding a ratio that indicates the accuracy of our phase-based WCET estimate for a given
value of k. Ideally, this ratio should be as close to 1 as possible, meaning that the phase-based WCET

closely matches the profiled WCET.
1.5 — = Perfect Estimation

For each resource budget (380 in total), we calculate
the WCET Amplificiation Ratios and plot the median.
The plot for the benchmark task fft in Figure 6 shows
that the median WCET Amplificiation Ratio converges
to just below 1.1, and that the reduction in the ratio indi-
cates diminishing returns as k increases. We observed a
similar trend across all workloads (omitted here). There-
fore, to determine the optimal number of phases for 10 20 30 a0 50 &0

Number of Changepoints (k-1)
each task, we select the value of k corresponding to
the “elbow point”—the point at which further increases Fig. 6. The median WCET amplification ratio
in k yield diminishing returns in the median WCET over all possible resource budgets for fft.
Amplificiation Ratio.

WCET Amplification Ratio

Computing the rate increase lookup table. The final parameter of the multi-phase model is GiA,
which is used by Rasco as a heuristic to decide which task 7* among the ready tasks would benefit
the most from an additional resource given their current phases.

One approach for selecting this task 7™ would be to give the resource to the task whose worst-case
rate improves the most from the additional resource. However, this approach does not account
for the fact that a critical threshold of resource budget is often required to achieve significant
improvements in the instruction rate. For example, the canneal task does not experience significant
improvement between the resource budgets (2.4, 2p,,) and (3.4, 2p,,). If resources are allocated
iteratively (one partition at a time, as in Rasco), this naive heuristic would not select canneal to
receive additional resources, even though its worst-case instruction rate improves significantly
with budget (3.4, 3pw) (and even more with (10,4, 10p,,)). Therefore, G’iA should incorporate not only
the rate of the phase each task would enter by getting one additional resource partition but also
the rates of the phases that could be entered with any amount of additional resources (up to the
maximum resource budget available currently).

This observation raises another crucial point: since the platform resources are shared, there may
not be sufficient resources for some tasks to ever reach their critical thresholds. To illustrate this
point, suppose there are R = (0., 13,,) remaining resources, but that canneal requires (1.4, 05,
additional resources to reach its critical resource threshold. In this case, some other task might

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:11

benefit more from the additional budget, despite canneal’s high resource sensitivity. Therefore, our
heuristic QiA must take into account the remaining resource budget, R, currently available.

Thus, to fully express how a task 7’s worst-case rate can change given (1) its current phase 6, (2)
each phase 0; it could enter by receiving additional budget §, and (3) the constraint on the amount

of remaining available resources R = (Rca, Rhy), We let 8 be a table and we set each entry 6°[R]
equal to the average change in the worst-case rate (9} —) over each phase 0; that 7 could enter by
receiving some additional budget ” where f’ € [(0,0), (R.a, Rpw)]-

4 Resource-Allocation and Scheduling Co-Design

Using the multi-phase model, our co-design algorithm focuses on multicore scheduling and resource
allocation for systems comprising one or more periodic taskgraphs, an application class of recent
interest in real-time embedded systems [7, 18, 21, 32]. Rasco imposes no constraints on the number
of taskgraphs or the number of tasks per taskgraph.

4.1 Problem Statement

Taskset. We consider a system of n periodic taskgraphs, T = {Gj,Gj, ..., G,}, scheduled on a
multicore platform (n € IN*). Each taskgraph G; is a DAG whose nodes represent tasks {r;, 75, ... , T}
and whose edges represent precedence constraints between tasks. Each G; has a period P; and a
relative end-to-end deadline D;. For each taskgraph, a source task—a task with no predecessors—is
released whenever a new instance of the taskgraph is released (i.e., once every P, time units),
whereas a non-source task is released when all its predecessor tasks have completed. We assume
that all taskgraphs release their first instance synchronously at time ¢ = 0, although the algorithm
can easily be extended to allow fixed taskgraph release offsets, as long as a hyper-period is
preserved.

Let H be the hyper-period of all the taskgraphs in T, i.e., the least common multiple of their
periods, and let K; be the number of releases of taskgraph G; in one hyper-period (thus, K; = H/P;
where P; is G;’s period). Then, we have a series of fixed release points A; = {(k—1)-P, | 1<k < K}
of the instances of G; in one hyper-period. We call A; the set of anchor points of G;. Therefore, each
source task of G; releases a job at each of the anchor points. We denote by 7 the set of all jobs of all
tasks of the taskgraphs in T that are released in a hyper-period. Let J; ; x denote the kth job of task
7; belonging to taskgraph G;. Then, the system is schedulable if all jobs J;jx € J complete their
executions by time A;j + D; where A; = (k—1) - P,

Note that each task executes a sequential workload (e.g., a function or program), running on at
most one core at a time, since taskgraph-level parallelism is inherently expressed in the taskgraph’s
DAG structure. We assume that a WCEP that holds for all resource budgets can be determined for
each task’s workload. Thus, a resource-dependent multi-phase timing model ©4 can be constructed
for each task 7, using techniques such as those discussed in Section 3.5.

Platform. The platform contains m identical cores that share a set of b different resource types.
For concreteness, we focus on two types of shared resources: the LLC and the memory bandwidth,
as described in Section 3. However, our algorithm generalizes to other types of shared resources
that can be partitioned. As stated before, we assume the shared cache is partitioned into N, equal
partitions, and the memory bandwidth is partitioned into N,,, equal partitions.

Goal. Given the above setting, our objective is to develop a co-design algorithm that leverages
tasks’ multi-phase models to holistically compute a schedule and fine-grained resource budget
allocations for the taskgraphs in T to maximize the system’s schedulability and resource utilization.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:12 A. Eisenklam et al.

4.2 Overview of Rasco Co-Design Algorithm

At a high level, Rasco schedules tasks by decomposing the end-to-end deadline of each
taskgraph into independent deadlines and release offsets for its tasks. Unlike traditional deadline
decomposition techniques, Rasco allocates deadlines and resources to tasks jointly, adjusting
deadlines based on resource allocations and vice versa.

Towards this, Rasco first assigns initial values for the release time, deadline, and base (“minimum”)
resource budget for each task in each taskgraph. It then constructs the set of all job releases J
in a hyper-period. Starting with the initial release time, deadline, and base resource budget ﬁ;"it
for each job Jin J, Rasco uses an iterative algorithm to compute new deadlines and fine-grained
resource budgets for each job. The release times and completion times of the jobs form a set of
decision points, at which we make scheduling and resource allocation decisions. We use the term
segment to denote the time between consecutive decision points.

At each decision point (from time t = 0 onwards), Rasco considers the set of all ready jobs
and decides which m jobs to execute in the current segment, as well as what resource budgets
they should get. The goal is to maximally reduce execution times by redistributing resources to
the jobs that would most benefit from them, while respecting job deadlines (by ensuring they
are allocated sufficient resources to complete before their deadlines, if at all possible). For this,
Rasco utilizes the multi-phase model ©,— ; to keep track of each job J's current phase 6; and the

parameter QiA to determine which jobs among the ready jobs would benefit the most from the
extra resources. As more resources are allocated to these jobs, their WCETs (computed using the
per-phase worst-case rates under each budget it has received) shrink and Rasco adjusts their
deadlines accordingly. It then determines which jobs should be scheduled on the cores based on a
global earliest-deadline-first (EDF) policy. As the deadlines of some jobs are shortened, the set
of jobs with the earliest deadlines may change, causing the set of jobs that are chosen by EDF to
change. Our algorithm iteratively distributes resources to jobs until there are no more resources to
give out. When this happens, the set of jobs with the earliest deadlines, their resource budgets, and
the next decision point can be determined (from the next earliest job release or completion time).
Rasco then moves to the next decision point and repeats this process.

The output of our algorithm is a static schedule for one hyper-period, which is made of a series of
consecutive segments. Each segment contains (< m) jobs that will be executed on the m cores and
the allocated resource budget for each job. Note that a job execution may span multiple consecutive
or non-consecutive segments (if it was preempted), and its allocated resource budget may also
change across these segments. At run time, the scheduler can schedule jobs and allocate resources
simply by repeating Rasco’s output schedule at each hyper-period.

Remark: While optimization might seem like a natural approach for computing a static schedule,
encoding the time-varying, resource-dependent behavior of each task into a constraint formulation
not only is highly challenging but also significantly increases complexity. In fact, prior work [27]
has shown that this approach is too expensive even for much simpler scenarios, with coarse-grained
static resource allocation. Therefore, we adopt an iterative, heuristic-based approach instead.

Figure 7 shows the high-level overview of Rasco. Next, we describe the algorithm in detail,
starting with the computation of the base resource budget and initial deadline for each task.

4.3 Computing Base Resource Budgets and Initial Deadlines

Our goal is to assign the minimum resource budget that each task would need for the overall
taskgraph to complete by its end-to-end deadline, assuming independent execution on sufficient
cores. Towards this, we first apply a deadline decomposition method to assign release times and
deadlines to tasks. We use the method of [15] which decomposes each taskgraph by placing the
tasks into time segments, such that the load in each segment is minimized. We begin by setting

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:13

Inner while-loop: iteratively give out resources

Line 8 Line 16-21 Yes Line 34 Line 38 Line 39

IA:IstllgaT Ceilifs s Calculate S ca:ugtwe No jt::':di:t;, Lire S(c):et::lte ErzEli
deadlines :> n :\r,i';?: :> de:,lis'::n :> and Ry ::> another :> save Sto :> de:i':;:;' :> for hyper- :> sd':: zl:xslz't::le
& budgets P! P resource? Schedule P No period

Pre-processing Line 13 Line 14 Line 22-31 Yes Output
Line 35-37

Outer while-loop: iteratively compute segments
Fig. 7. Overview of RAsco.

the WCET of each task equal to its WCET with the maximum amount of resources (obtained via
profiling). After applying the deadline decomposition method, we iteratively take away resource
partitions until we find the minimum resource budget ﬁ}"it > (2.4, 2py) that each job Jof task ¢
needs to ensure its resulting execution time plus its release time does not exceed its deadline. The
computed job release times, deadlines, and base budget allocation ﬁ}"it serve as inputs to Rasco.

4.4 Rasco Algorithm Details

Algorithm 1 shows the pseudocode for Rasco. Using the initial release time, deadline and base
allocation, Rasco computes a static schedule, Schedule. Each element Schedule[t;] contains a
set of (at most m) jobs to execute at decision point #; and their assigned resource budgets (where
0 =1t < - <t < H, and H is the hyper-period). The algorithm takes as input the following
parameters: the set of all job releases J in the hyper-period; the set A = {A; | G; € T} that contains
the anchor points (fixed release times) of the source tasks in the hyper-period; and the release time
rp the deadline d s and the base resource budget ,Bi"it, for all J € J. For its co-allocation, Rasco
also takes as input the total number of instructions maxIns,= y and the multi-phase model ©,=;
for each J, where Jis a job of task 7. The last two inputs are the numbers of cores m and resource
types b.

Notation. R,y denotes the vector of maximum number of partitions per resource type — e.g.,
Rinax = (Nea, Npw) on a platform with N, cache partitions and N,,,, bandwidth partitions. Through-
out the algorithm, t denotes the current decision point at which we compute the schedule, t,c ¢
denotes the next decision point, .4 denotes the future anchor points, ins; denotes the number of
instructions J has already retired at ¢, Q denotes the set of ready jobs at , and S and R, denote
the set of < m jobs with the earliest deadlines (to execute on the cores from ¢ to t,.,;) and the
total resource budget assigned to these jobs, respectively. Finally, f; denotes the current resource
allocation (initialized to ﬂ;”it), and r T €] and d ; are updated throughout to denote the release time,
completion time and deadline of J as it is scheduled and allocated budgets in segments.

Initialization: The algorithm begins by initializing the variables (Lines 4-9). It first sets Schedule
to be empty. Line 5 then constructs a set of b unit vectors that are used to indicate/select between
resource types. Therefore, with b = 2 resource types (cache and bandwidth), I = {(1, 0), (0, 1)}.
For each job J € 7, Rasco then initializes the retired instruction count ins Jto 0 and the flag done 7
to false to indicate that] has not completed its execution. It also sets the current budget f; to
/)’}"it and calculates the completion time c; under this budget. Rasco then sets ¢ = 0 as the current
decision point and sets the next decision point #,e,; to the earliest release time or completion
time of any of the jobs in J that occurs after . Next, RAsco initializes the set of future anchor
points A and constructs the set of ready jobs Q to consider for scheduling and resource allocation
at time ¢.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:14 A. Eisenklam et al.

ALGORITHM 1: Rasco

1: Input: J, A, {rj, dj, pinit, maxins; | J € 7},{O, | r € T} > Job info. and multi-phase execution models
2: m,b > Number of cores and number of resource types
3: Output: Schedule > Schedule with < m job-budget pairs at each decision point
4: Schedule « {}
5: I« {ej|j,i € [[b]l, ¢fi] < 1ifi=j, ¢li] « 0 otherwise} > Set of unit vectors to indicate resource types
6: forall J € 7 do
7: ins; < 0; done; < false; §; < g, ¢j < GerFiNisu(J, B, insj, 1), 0) > Initialize per-job variables
8: 1 < 0; tpexe < min{r;>0,¢;,>0 | J € J} > Current and next decision points
9: A A\N{0}, Q< {JeF| r; =0} > A: set of future anchor points, Q: set of ready jobs att = 0
10: while true do N N
11: forall J € Qdo df" « dj; f; < B/™ > Save initial deadline, assign base budgets
12: while true do
13: S, Ry, thext < GETSCHEDSET(Q,{f}, ins)|] € O}, I, Ripax, tnext M) > Get m jobs to schedule, budget used by S
14: (J,8)) < ResourceALLoc(Q,{f ins;|J € O}, S, R, t, tyext> I, b) > Select job Jto get resource d;
15: if J = null then break > Cannot give more resources, go to Line 22
16: By B;+9; > Else give extra resource to J
17: dj«—d;— (c] — GeTFIN1sH(J, Bpins.t, brext))s cy GETFINISH(], By inspt, rext) > Update d; and c;
18: if J & Sthen
19: Jinax < argmax ;g dj > Get job with max. deadline in S
20: if (dy>dj, VR =P, + B> Ry then > Check if J can and should enter S
21: d; < d}"it > J cannot enter S, reset d;
22: forall]E_Q\Sdo -
23: By < B dy — df"; ¢j < GETFINISH(J, B}, ins J, fext ©0) > Reset any unscheduled jobs
24: forall J € Sdo > Update scheduled jobs and successors
25: ins; <~ CoMPUTEINS(J, B3}, ins 1, , trext)
26: if ins; = maxins,-; then > Jfinished
27: € < thexts donej <« true > Check for any new job releases
28: ReadySucc < {Jiuce | Jsuce € successors(J) A done; , =trueVj, 4 € predecessors(Jiuco)}
29: for all J;,.. € ReadySuccdory <« cpcy < GETFINISH(]SUCC,ﬂj'S’i‘“, 0,7 0 %)
30: Q <« (Q\{J}) UReadySucc > Add any newly released jobs to Q, remove J
31: Schedule[t] < {(J, B)) | J € S} > Save jobs and budgets for decision point ¢
32: if Q = @ A A = @ then break > No more jobs, complete algorithm
33: if O = @ then t < min(A) else t <« t,o4 > Prepare for next segment, update current decision point
34: forall (J € J |ry=t A parents(J) =) do
35: Q< Qu{J} > Release ready source jobs, add to Q
36: A — A\ {t} > Remove t from set of future anchor points
37: thext < min{ min(A), minjepcy} > Get next decision point, segment complete, return to Line 10
38: Output: Schedule > Schedule with < m job-budget pairs at each decision point
39: returncy < A+ D VJp € > Schedulability test: J ;i is the k'™ job of task 7; in taskgraph G;

Main outer while-loop: After initialization, it proceeds to the outer while-loop (Lines 10-37),
which iterates through each segment determining the set of jobs to schedule and their resource
budgets. This resource-deadline co-allocation is done in three main steps:

Step 1 (Calculate S and R): After initializing the current budget f; to the base budget and
saving the initial deadline for each J € Q (Line 11), Rasco calls the function GETSCHEDSET
(shown in Algorithm 2). This function returns the m jobs (if any) with the smallest deadlines
in Q to be the scheduled set S, and computes the total budget R, used by these jobs (Line 3 of
GETSCHEDSET).

Step 2 (Give out a resource): In Step 2, Rasco calls the function REsourceALLoC (shown in
Algorithm 3), which uses the multi-phase execution model ©,—; to determine the job Jin Q that

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:15

ALGORITHM 2: GETSCHEDSET

Y
EAN AN B 4

_
3

R N A S A T

: Input: Q, {ﬁ]y ins]U € Qb L, Rnaxs texts
: Output: S, R, fext > S: m jobs with earliest deadlines, R;: budget used by S
S e argming o (orjem 2 jepr 4 Rs < Xjes By
: for J € Sdo
if c; < fex then > Changing f; caused the segment boundary to change
Lnext < cy > UPdate Tnext
for all J’ €QN {J} do > Reset all jobs in Q aside from J
By < ﬁlj'i‘[; dy «— d; cp «— GETFINISH(J', B, ins, 1, 00)
S« argming .o (oo Ljregr 4y R < Dpes By > Recompute S and R,
: while (R; > R;,,) do > Check if initial budgets exceed R, if so take away resources
Jsave < argmin g =text d; > If any jobs define t,.,;, save one of them from resource removal
J <« argmax g oy dy —cp > Job with largest slack (that does not specify #,.)
0 < ©,=jplins] > Current phase of |
&y« argminejE 1] eR>€Rma 0P Riax - ej—¢jl > Unit vector for least impactful resource type
By < Bj— 0y ¢j < GETFINISH(J, B, ins j, 1, text) > Take away this resource from J
Ry« R;—&; > Update R

: Output: S, R, text

ALGORITHM 3: RESOURCEALLOC

L
® >IN e 9

19:

: R

R AT A~ > e

: Input: Q,{f,ins)|J € O}, S, Ry, t, tyext> I, b
: Output: (Jyest> Spest) > Select job Jies; to get additional budget Spegt
avail < Rmax — Rs > Check how much of each resource type is available
: forall] € Qdo > For each job J
for all j € ['[b]] do ScoreVec)[j] <~ 0 b Initialize score vector: ScoreVec [j] stores the score for resource type j
if J € S A B; = Ry then continue > Jis maxed out, could not be swapped into S
if R,y.i1 = 0 A J € Sthen continue > Max. budget already used by S, only check jobs not in S to swap
ins™* — CoMPUTEINS(J, £, tex) > Get instruction count at f,e.
0; « @,Eﬂﬂ][ins]] > Find current phase 6, of Jusing Gf\ﬁ] and insj, where Jis a job of
while 0] < ins[]"EXt do > Iterate through all phases in current segment
startlns < max(@’, ins); endIns < min(6;, inst]"”‘)
foralle; € Ido > For each resource type
if ;- €j = Rpax - ¢; then continue > If Jalready has the max. for this resource type, skip
ScoreVecj|j] « ScoreVec [j] + 0P[Ryt - ej]/(endins — startins) > Increase score by weighted 6
i—i+1 > Move to next phase in segment
¢ Jbest < argmax;eq [|ScoreVec o > Give resource to the job Jwith the single largest score in its ScoreVec
¢ Shest < argmax, [ScoreVecy, . - el > Resource type that corresponds to the largest score in ScoreVecj,
: if [ScoreVec, o= 0 then Joq < null > If all ScoreVec’s are zeros, no more resources could be given
Output: (]best) 5best)

would benefit the most from extra resources during the timing segment from ¢ to the immediate
next decision point t,e, and which resource type (indicated by §;) to give to this job (Line 14).

If no more resources can be given, RESOURCEALLOC returns null for Jand Rasco skips the rest

of this step (Line 15), moving to Step 3. Otherwise, it will add the extra budget §; to J's current
budget S (Line 16), recalculate the completion time, and shorten the deadline of /by an amount
equal to the reduction in execution time under the newly increased budget (Line 17).

The completion time, which is recomputed after each resource allocation, and used to define

future decision points, is computed by the GETFinisH function, shown in Algorithm 4.

After computing the new completion time and deadline of J (the task chosen to receive an

additional resource), Rasco checks whether Jshould be swapped into S. This will occur if the new

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:16 A. Eisenklam et al.

ALGORITHM 4: GETFINISH

1: Input: J, Bj,insp, £, tey > Given that Jis at instruction count ins j, and that f3; resets to ﬁ}"it at they
2: Output: ¢j > Compute maximum finish time (in absolute time since ¢ = 0)
3: inst]nEXt < ComPUTEINS(J, B}, ins 1, thext) > Get instruction count at #,e,
4: 6 « @TE]‘ﬂ][ins]] > Find current phase 6; using insj, where Jis a job of task
5: tiet < Ok < [©= 1| > Initialize tiq; get total number of phases in @5,
6: whilei < kdo
7 startlns < max(@’, ins); endins < min(6, inSt]"m) > Get instructions retired in this phase
8 fieft < Bt + (endIns — startlns) /6 > Get worst-case execution time using worst-case rate 6/
9 if 67 > inst]”e“ then > Check if we have reached instj‘EXl
10: 6 <0, ﬂ}nit[instf"e’“] > If so, switch to multi-phase model for ﬂ}"“, get new current phase
11: k < |®E]\ﬁ7“‘| > Update the number of phases
12: inst]"e“ « maxIns,_; > Continue iterating through phases until we reach maxIns,_;
13: else
14: i—i+1 > Otherwise, go to next phase in multi-phase model for f;

15: ¢j <t + tegy
16: Output: ¢;

ALGORITHM 5: ComPUTEINS

1: Input: J, Bj,insp, £, tey > Given that Jis at instruction count ins; at time ¢ with resource budget f;
2: Output: ins; > Compute instruction count at f,e,;
3: 6« @TE]‘ﬂ][ins]] > Find current phase 6; using ins j, where Jis a job of task r
4: fef < (thext — 1); insRetired < 0 > Get time until ¢, and initialize instructions retired
5: while tj.g > 0 do
6: startlns < max(@}, ins); endIns < 6f > Get number of instruction in current phase
7: tohase < Min(fieg;, (endIns — startlns)/6)) > Compute time that Jwill spend in this phase
8: insRetired « insRetired + (6] - phase) > Update insRetired
9: fieft < bieft — Lphase > Subtract time spent in this phase from .
10: i—i+1 > Go to next phase

11: insj « ins;+ insRetired
12: Output: ins;

deadline of Jis smaller than the latest deadline in S and if the swap does not lead to the scheduled
jobs having more total budget than R, (Lines 18-20). If either condition fails, the deadline of Jis
reset (Line 21); otherwise, the job will be added to S in the next call to GETSCHEDSET.

While there are more resources to give out, Rasco will repeat Step 1 (to update S and R,) and
Step 2 (to pick another job to receive a resource). When no more resources can be given, Rasco
then moves to Step 3. Note that for RESOURCEALLOC to return null and for the inner while-loop to
terminate, R, — R, must equal the zero vector (all resources allocated), and for every J € Q, J € S,
By must be equal to Ry, Intuitively, this indicates that the number of resources required to
sufficiently shrink the deadlines of these jobs was too large for the job to ever be swapped into S.

Step 3 (Update Q, save S): Once the algorithm cannot give out any more resources to jobs, the
scheduled set S is fixed for the current decision time point t. Rasco will reset the current resource
budget for all ready jobs that are not in the scheduled set to be their base budget and reset to their
initial deadlines in case they were changed (by entering S at any point). It then computes their
new completion times, given that they were not scheduled in the current segment (Line 23). Rasco
then traverses through all jobs in the scheduled set S (Line 24). For each scheduled job J, it uses
the function CompUTEINS (shown in Algorithm 5) to compute the number of instructions ins that
Jwould have completed by . (i.€., after executing in the segment [¢, t,,e4¢)) under its current
allocated budget (Line 25). If ins is equal to 7’s total number of instructions (where Jis a job of 1),

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:17

Gl G Gz Cache i
BW E
63 Core 1 7 A A
Core2 |) | b |1
ot ottt
(a) Example system with 3 taskgraphs (b) Schedule with N, = 20, N, = 20, and m = 2

Fig. 8. Rasco input and output visualized. Note J, represents the first job of task 74, and so on.

then Jwould have finished its execution by t,,; hence, we set J's completion time to be #,.,; and
done to true to indicate that Jhas completed at the next decision point (Line 27). Rasco will then
check whether any successor jobs of Jshould be released (Line 28), shift their release times and
completion times based on the completion of J (Line 29), add them to Q, and remove J (Line 30).
Finally, Rasco saves the current set of job-budget pairs in S to Schedule for decision point ¢
(Line 31). If the ready set Q is empty and there is no future anchor point, then the static schedule
is completed (Line 32) and the algorithm returns whether the taskset was schedulable (Line 39).
Otherwise, Rasco prepares for the allocation in the next segment, starting from the new decision
point ¢ (Line 33). It marks all source jobs whose release times are equal to ¢ as ready and adds them
to the ready set Q, then updates the set of future anchor points A (Lines 34-36). Finally, it updates
the immediate next decision point after to be the minimum of any completion time of the jobs in
the ready queue or the earliest future anchor point (Line 37). The algorithm then continues on to
the next iteration to compute the next timing segment [, t,,e,;) (restarting from Step 1 onwards).

Schedulability test: The schedulability of the output schedule is determined by checking that the
completion time Clii of every job J; jx € J is no later than A;j + D;, where J; j is a job of task ;
in taskgraph G;, A; is the kth release of G;, and D; is the relative deadline of G;. If this condition
holds, the taskset is deemed schedulable for the output schedule computed by Rasco.

Figure 8 shows a simple taskset with three taskgraphs and the Schedule computed by Rasco.

Details of key functions. We next discuss the key functions used in Rasco in greater detail.

GETSCcHEDSET (Algorithm 2): The function GETSCHEDSET computes the m jobs (if any) with
the smallest deadlines in Q to be the scheduled set S and their total allocated budget R, (Line 3). It
then checks if the new completion time of any J € Sis earlier than the next decision point #,ey¢,
as a result of getting an additional resource (Line 5). If this is the case, we have a newly created
future decision point (at the new c;) that is earlier than the immediate next decision point Z,ey-
Therefore GETSCHEDSET updates t,ey; to be c; (Line 6) and resets the resource-deadline allocations
at the current decision point ¢ for all jobs in Q except for the job J(Line 7).

The intuition behind this reset is that, since ¢ < fext, the current allocation for the jobs, which
is to be applied for the timing segment from ¢ to t,.,;, may not be the most resource efficient if
it is used instead for the shorter timing segment [t, cj). This is because the improvement in the
execution rates, which we aim to maximize, varies depending on the timing segment for which we
compute the schedule. It is influenced by where in the program each job is (i.e., which phase), the
phases it will enter until the next decision point, and how much improvement in execution rate can
be achieved in these phases. Therefore, we redo the allocation for the jobs to avoid an inefficient
allocation. Note that we only reset the allocation for other jobs in Q but not J, since we successfully
shrunk J's completion time by giving it §; extra budget. We then compute a new scheduled set S
and its total budget R, (Line 9).

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:18 A. Eisenklam et al.

Note that if the base budgets of the jobs in S are large, R may initially be larger than R, (the
maximum platform resources) at the beginning of a segment, or after the budgets have been reset
as described above. In this case GETSCHEDSET iteratively takes away resources from the job with
the most slack in S (unless this job’s completion time uniquely defines t,.,;) until the total budget
R, used by S is within Ry, (Lines 10-16 of GETSCHEDSET).

ResourceALLOC (Algorithm 3): Intuitively, RESOURCEALLOC uses the multi-phase execution
model O, to determine which job J € Q would benefit the most from an additional resource
given the remaining resource budget R,yail = Rmax — Rs. This is done by considering the value of
the lookup table HiA for each phase 6; that each job Jwill enter between its current instruction until
reaching the next decision point (given its current budget f;). Using the numbers of instructions
that J will execute within each phase as the weights, we then compute a weighted sum of the
@A[Ravaﬂ - ¢j] values for each resource type indicated by e; € I (Lines 10-15). The job with the
highest weighted sum (called a score) is then selected to receive the resource type that produced
the highest score (Lines 16-17). If no more resources can be given, RESOURCEALLOC returns null.

GETFINISH (Algorithm 4): The GETFINISH function computes the completion time of a job J
under the current budget. It works by considering all the phases 8, that J would execute under
the current budget, starting from the current instruction count. It computes the total time that J
will spend in these phases, assuming that Jwould be given the current budget f§; up to the next
decision point and its base budget ﬁ}"it afterwards. The time spent at each phase 6; is calculated
based on the worst-case instruction rate 6] and the number of instructions in ; that J will execute.

4.5 Termination and Complexity Analysis

For Rasco to terminate, the algorithm must break out of both while-loops. The outer while-loop,
which computes the segments, executes at most 2 - | 7| times since each iteration corresponds to a
decision point, and there are at most two unique decision points for every job in J (the job’s release
and completion times). For termination, each of these iterations then requires the inner-while
loop to be broken, which occurs when the function REsourceArLoc returns null for J. This occurs
trivially if Q = @, or when both of the following conditions are met: (1) for every J € Q such that
J &S, By = Riax> and (2) Ry = Ryyay. Assuming the worst-case scenario where ﬁ;nit =0VJeQ,
meeting these conditions for a single segment requires (|Q| — m + 1) - ||Rpyaxll1 iterations. Recall,
however, that budgets can be reset when giving a resource to a job J causes the segment boundary
bnext to change (i.e., ¢; < t,ey). Nonetheless, this can only happen a finite number of times because
GETSCHEDSET guarantees that f,,.,; Will never increase once a smaller completion time is found.
Therefore, the number of resets in a segment is bounded and the above two conditions will be
met eventually. At this point, the inner while-loop is broken, which enables the outer while-loop
to advance to the next iteration. Since these iterations are bounded, Rasco is guaranteed to
terminate.

In particular, the number of resets in a single segment is upper bounded by |Q| - || Rpmaxll1, since
there are at most |Q| - ||Rpaxll1 unique values of t,.4;. Therefore, for a fixed number of resource
partitions and cores, the runtime complexity of Rasco is O(|Q? - |7]). In other words, Rasco has a
linear dependency on the number of jobs in the hyper-period, and a quadratic dependency on the
number of tasks in the taskset (since |Q| is the number of concurrently released job, which is upper
bounded by the number of unique tasks in implicit/constrained deadline systems).

5 Numerical Evaluation

To evaluate the effectiveness of Rasco, we conducted a series of experiments using synthetic
real-time DAG taskgraphs with resource-intensive benchmarks as workloads. Our goal was to
evaluate the schedulability and end-to-end latency for tasksets, as well as Rasco’s running time.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:19

Taskset generation. We randomly generated tasksets with varying target taskset utilization, as in
[31]. To generate a taskset T with a target utilization U, we constructed n taskgraphs Gy, ..., G,
WCET,

b
We leveraged the DAG creation tool [8] developed by [31] to generate 100 unique tasksets for
each target utilization. The taskset target utilizations are set in the ranges [0.2, 5.0], [0.2, 8.0], and
[0.2,10.0] at steps of 0.2, for m = 4, m = 6, and m = 8 cores, respectively. This produced a total of
2500, 4000, and 5000 tasksets for the three settings of m.

Each taskset consists of n = 5 taskgraphs, with each taskgraph’s utilization uniformly distributed
in [0,m] (calculated by the classic UUniFast-Discard algorithm [9]). To create each taskgraph,
the DAG generation tool randomly selects a number of layers in [minlayer, maxlayer], populates
each layer with a random number of nodes in [1, 4], and then assigns edges between these nodes
with probability p. It then creates a single source node and a sink node. (These can be dummy
nodes, e.g., if a taskgraph application has multiple source and/or sink nodes). For our experiments,
we set minlayer = 3, maxlayer = 8, and considered three different values of p, at 0.50, 0.75, and
0.90. Since p is the probability of adding an edge between nodes, we used it as a proxy metric
for how sequential the resulting taskgraphs are. For m = 8 cores, we increased the number of
taskgraphs per taskset to 10 to achieve higher taskset utilizations and to increase taskset-level
parallelism.

We next assigned a workload to each node (task) in the taskgraph. We picked the workload
uniformly at random from our set of benchmarks (canneal, dedup, fft and streamcluster). We set the
reference WCET of each task 7 to be the WCET of its assigned workload under uniform resource
allocation feyen = (Nea/m, Npy,/m), obtained through measurements (as discussed in Section 3.1).
Since we used real benchmarks, we could not select each taskgraph’s period from a candidate set
of periods and simply adjust the execution times to match the target utilization (e.g., as done in
[31]). Therefore, we calculated a period for each DAG G; such that the utilization Ug, assigned by

the DAG creation tool is maintained: P; = (ZTEG,» WCETT) / Ug,- We then rounded the period to
the nearest harmonic period defined by the closest power of 2. We kept only the tasksets T whose
resulting utilization after this procedure is within 0.05 of the target utilization Ur.

Finally, we applied our proposed algorithm in Section 3.5 to construct a multi-phase model for
each benchmark from its execution profile, obtained via measurements (Section 3.1). The model of
each benchmark was then used for every task that was assigned the benchmark as its workload. The
number of phases k for canneal, dedup, fft, and streamcluster were 70, 40, 40, and 15, respectively.

whose individual utilizations Ug, = ZreG,. sum to the target utilization (i.e., Z?:l Us, = Up).

Implemented algorithms. The output of Rasco is a static schedule for a hyper-period which
follows global EDF, where the job deadlines are computed based on the fine-grained resource
allocation and deadline decomposition co-design. As we are not aware of any prior work on the
co-design of resource allocation and scheduling, or on dynamic fine-grained resource allocation,
that provides hard timing guarantees, we compared Rasco with global EDF when each core is
statically assigned an even partition of the resources feven = (Nea/M, Npw /m) to understand the
impact of our co-design and fine-grained dynamic resource allocation on schedulability. For a fair
comparison, we applied the same deadline decomposition method [15] used in our pre-processing
to assign job deadlines. We then implemented two different baselines based on this method.

The first is BASELINE-TEST, which is the utilization-based schedulability test derived in [15]. We
used this as a lower bound on our schedulability results and to analytically evaluate the effect of
varying our configuration parameters on schedulability. However, since RAsco computes a static
schedule with synchronous job release at t = 0, for a better comparison, we implemented another
algorithm called BASELINE-S1M that uses the same deadline decomposition technique under even
resource partitions and simulates a full hyper-period for each taskset under global EDF.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:20 A. Eisenklam et al.

n n n

B 100Fes s ﬁloom{— S ————— B 100eesciTe

X 90 N X 90 : X 90 S

] 1] \]

80 \ S 80 S 80 Y

= \ = b L \ | —— RASCO

o 70 Y o 7 \ o 7 \ baliinalsl

g 0 \ 3 60 y |~ RAsCO 3 60 \ aseline-sim

B 50 —e— RASCO 5 baseline-sim K] . —— baseline-test

S 1 . 5 50 \ ! 5 50 N

g a0 \ baseline-sim 3 a0 | - baseline-test 3 a0 d

2 3 i - baseline-test 2 3 K 2 3 !

@ 20 i & 20 AN & 20 i

5 10 > 5 10 \ 5 10 .

R OTTHETIO LS 2.0 2.5 3.0 3.5 4.0 45 5. R OTTHETIO LS 2.0 2.5 3.0 3.5 4.0 4.5 5. R OTTBETIO 15 2.0 2.5 3.0 3.5 4.0 45 5.

Taskset Utilization Taskset Utilization Taskset Utilization

(@)m=4,p=05 N, =20 (bym =4, p =075 N, = 20 (©m=4,p=09 N, =20

2 2 2

3 100 poag 3 100 ”“\ ————— S iza a 100 feewgsy

¥ 90 X 90 y X 90 X

8 8ol | 8 so| | S 80 Y

- : [= i

o 70 \ o 70 o 70 \

3 60 + 3 60 i 3 60 \

5 5 \ 5 5 —=— RASCO 5 5 * —— Rasco

]] A ol S \

T 40 t —— RASCO S 40 1 baseline-sim T 40 i baseline-sim

2 3 \ baseline-sim 2 3 4 —*- baseline-test 2 3 —+- baseline-test

& 20 X —+- baseline-test & 20 \ & 20 N

.- - LYY -

5 10 o 5 10 o 5 10 .

s 0 10 2.0 3.0 40 50 60 7.0 80 & " 10 20 3.0 40 50 60 7.0 80 & 10 20 3.0 40 50 60 7.0 8.0

Taskset Utilization Taskset Utilization Taskset Utilization

(dm=6,p=0.5N_p, =24 (e)m=06,p=0.75N_y, = 24 (flm=16,p=09,N_,, =24

2 2 2

@ 100}ees @ 100feens: @ 100 fsseryc: T——r

X 90{ X 90{ X 90 *

w Y [Y w

© 80 © 80 © 80 A S

- \ [=

o 700 & o 70 18 o 70 L

3 60| | 3 60 ! =s= RASCO_|_ 5 60 Y| —— RascO

I s0 1 T s i baseline-sim T s i baseline-sim

3 40 i —e— RASCO 3 a0 \\ —+~ baseline-test 3 a0 it —e— baseline-test

2 3 i baseline-sim 2 3 \ 2 3 \

& 20 % —- baseline-test 8 20 K 8 20 “»\

%5 10 ! %5 10 %5 10 AN

& 16730 3.0 4.0 5.0 6.0 7.0 8.0 9.0 100 & 16750 3.0 4.0 5.0 6.0 7.0 8.0 9.0 100 & 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Taskset Utilization Taskset Utilization Taskset Utilization

(g)m=8,p—05Ncabw— 24 (h)mZSsp_075Ncabw 24 (i)m:&p_ogj\]cabw_ 24

Fig. 9. Percent of schedulable tasksets for increasing p values (L to R) and increasing cores (top to bottom).

We implemented all three algorithms, Rasco, BASELINE-TEST, and BASELINE-S1m, within 1,273
lines of Python code and 675 lines of C code (approximately 2,000 LoC in total).

Schedulability results. Figure 9 shows the schedulability results (the percent of the 100
tasksets that were found schedulable) for Rasco, BASELINE-S1M, and BASELINE-TEST across taskset
utilizations.

The first row of the figure shows the results for m = 4 cores, with N, = 20 cache partitions and
Npw = 20 bandwidth partitions. Therefore, both baselines have static resource partitions of size
Beven = (5¢as Spw) for each task on each core. Figure 9(a), (b), and (c) shows the schedulability results
for p = 0.50, p = 0.75, and p = 0.90, respectively. Notice that the BASELINE-TEST schedulability
increases as p increases. As more edges are added, the critical path of each taskgraph increases.
Since all of the generated workloads must have a period larger than their critical path (otherwise,
the taskgraph is trivially unschedulable), the taskgraphs generated with more edges (larger p) tend
to have fewer nodes and therefore are easier to schedule.

Across all m values and p values, Rasco significantly outperforms BASELINE-SIM at high utilizations.
In Figure 9(c), for example, Rasco can schedule approximately 55% more tasksets than BASELINE-S1M
at utilization 3.8. At utilization 4.0, BASELINE-SIM is unable to schedule any of the tasksets, whereas
Rasco can schedule almost all of them. More surprisingly, Rasco continues to maintain high
schedulability as the taskset utilization increases beyond the platform capacity. For instance, at
taskset utilization of 4.5, Rasco can schedule over 65% of the tasksets. The results clearly illustrate
the combined benefit of co-design and fine-grained resource allocation, especially at heavy loads.

Overall, however, the performance of BASELINE-SIM is high. Since the number of shared cores
is small, the size of the even resource partitions (Seven = (504 5pw)) is relatively large when we

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:21

o 2000 4000 6000 8000 10000 12000 14000 16000
Number of Jobs in Hyper-period

1.7x speedup
(3s reduction)

P —— RASCO 1400

m ; . —— RASCO

~ 110 baseline-sim 1200 baseline-sim

a ~1000

g 10.0 g 800

® 9.0 ‘g’ oo ‘e .
- & 400 ® :‘..:' .
w 8.0 200 *

N

o)

]

(=]

I

13

S

<

Algorithm Min. (s) | Median (s) | Max. (s)
Rasco 1.506 19.284 | 1382.011
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 BASELINE_SIM 0004 0112 450137

Utilization

Fig. 10. Latency of RAsco vs. BASELINE-SIM (m = 6). Fig. 11. Runtime data (m = 6)

keep N, and Ny, fixed. For some tasks, setting § = (5.4, 5py) is enough for them to reach their
critical resource thresholds. This suggests that an even resource partitioning strategy can perform
reasonably well on a platform with sufficient shared resources. If the resources are constrained,
however, Rasco will become highly beneficial.

For example, recall that the platform that we collected profiles on (which has N, = 20 and
Npw = 20 partitions) has m = 8 cores. This means that an even split of these resources to cores
would give foven = (2.5.4, 2.5p1), Which we observed was suboptimal for resource-sensitive tasks
on this platform. Therefore, we expect performance to degrade significantly for BASELINE-S1m
on the reference platform. Since we cannot give out fractional partitions with CAT, however, we
increase the number of resource partitions in the remaining experiments to N, = N,,, = 24 to
have the same total amount of resources for all three algorithms when m = 6 and m = 8.

The second row of Figure 9 shows the schedulability results for m = 6 cores across varying
p. Already, we see a large performance gap between Rasco and BASELINE-S1Mm, since each job of
BASELINE-SIM is limited to feyen = (4¢a> 4pw) While Rasco is able to dynamically reallocate all
N., = Npw = 24 resource partitions between jobs across their various execution phases. Notably,
BASELINE-SIM cannot schedule any taskset at utilization 6.0, while Rasco can schedule close to
100%, further confirming the consistent high performance benefits of Rasco as we scale the system.

We also notice that, under the same CPU load, BASELINE-SIM’s ability to schedule tasksets
diminishes as the resources per core under even partitioning become more constrained (even
when the total amount of resources in the system increases). This is demonstrated by the overall
downward trend in schedulability when moving from the first row to the second row of the figure.
For instance, consider the middle column: while BASELINE-SiM can schedule all tasksets at 3.0
utilization on 4 cores (i.e., 75% CPU load), it can only schedule around 90% of the tasksets at the
same CPU load (4.5 utilization on 6 cores) when it has one fewer resource partition. In contrast,
Rasco is able to achieve the same or even better schedulability performance.

Latency. Importantly, we observed significant decreases in the average end-to-end latency of all
taskgraph releases in the hyper-period for Rasco compared to BASELINE-S1M, across all utilizations.
Figure 10 shows these results for m = 6. Notice that at utilization 1.6, the average end-to-end latency
is reduced from over 7 seconds to just over 4 seconds, and the magnitude of reduction is similar
across all utilizations. This is due to Rasco’s ability to efficiently allocate resources to the jobs that
most benefit from them, thus reducing overall execution times and improving latency performance.

Runtime comparison. Figure 11 compares the runtime of Rasco to BASELINE-SiMm for all
generated tasksets for m = 6 cores. Since Rasco and BASELINE-S1M both compute static schedules,
their runtimes scale linearly with the number of jobs in a hyper-period (as discussed in Section 4.5).
However, Rasco’s runtime also depends on the number of tasks per taskset, which varied

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:22 A. Eisenklam et al.

significantly across tasksets in our experiments, explaining the wider runtime variation compared
to BASELINE-S1M’s. The table in Figure 11 compares the runtime summary statistics of the two
algorithms. Overall, Rasco can efficiently compute schedules for tasksets with a very large
hyper-period (with 16,000 jobs).

65

Runtime and storage scalability. To evaluate the e o Number of Taskgraphs
scalability of Rasco, we performed an additional T Trendiine '

study with exponentially increasing taskset sizes. To R

show the quadratic dependency on the number of
tasks, we fixed the number of tasks per taskgraph
and set the number of taskgraphs per taskset to 2'+1
for each step i € [1,6]. We then randomly gener-

ated 20 tasksets at each step size, ran Rasco on each Padhd 1:, o .
taskset (with m = 8), and plotted the average run- Number of Tasks

time. Figure 12 shows the results. The largest taskset
size contained 65 taskgraphs with 715 tasks and had
a mean runtime of ~16 hours, which, although large, is feasible for an offline algorithm with known
runtime complexity. Finally, the memory required to store a Rasco scheduling table as a C struct is
290 - |Schedule| bytes, which is relatively small. For instance, the largest scheduling table in this
study—with 10,834 segments and 5,765 jobs—required only ~3.14 MB of memory.

6000

[
Y
oF

5000

-
N

4000

-
o

3000

2000
()

Mean Runtime (hrs)
Jobs per Hyper-period

1000

o N & o

Fig. 12. RAsco runtime vs. taskset size (m = 8)

6 Prototype, Runtime Overheads, and Experimental Evaluation

To evaluate the runtime overheads, safety, and practical utility of Rasco, we implemented a proto-
type of a Rasco runtime scheduler within an RTOS and measured its runtime overheads. We first
describe the prototype, then present a method for incorporating these overheads into Rasco, and
experimentally evaluate the safety and utilization overhead of its overhead-aware schedules.

6.1 Rasco Runtime Scheduler Prototype

Our prototype was implemented in LITMUSRT [5], a real-time scheduling framework built on top
of Linux. LITMUSRT enables developers to implement real-time schedulers as plugins, which are
dynamically loaded and executed within the Linux kernel. Our prototype contains = 880 LoC.

Core scheduling logics. The Rasco runtime scheduler operates by referencing a scheduling table
computed offline by the Rasco algorithm. At the start of each experiment, the scheduler initializes
a cross-core global segment index to track the current scheduling segment, along with individual
core-specific counters. It then uses a newly added system call to load the scheduling table into the
kernel, launches all DAG tasks, and finally releases all source tasks simultaneously via LITMUSRT,
Whenever a core’s scheduler is invoked, it checks whether its local segment index is behind the
global index (i.e., a new segment has reached). If so, the core updates its local counter and applies the
new resource allocation for the new segment. It then references the scheduling table to determine
the task it should execute and schedules it accordingly. At the first scheduler invocation (right after
the initial task release), the scheduler also initializes a timer to fire at each subsequent decision
point in the static schedule. The interrupt handler for this timer updates the global segment index
and marks all cores to be preempted, prompting them to invoke their schedulers.

Work-stealing via under-run handler.’ Since the static schedule assumes worst-case rates, a
job may complete earlier than the time indicated by the schedule. To maximize resource utilization,
we implemented an under-run handler to work-steal ready jobs (whose predecessors have all

3For robustness to system faults, our prototype also includes a WCET overrun handler (omitted here due to space constraints).

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:23

completed) that are scheduled in future segments to run on the idle core during the remaining of
the current segment. If multiple such jobs exist, we pick the one with the earliest deadline, which
can be efficiently determined since jobs are already sorted by deadlines in the scheduling table.
Note that we simply utilize the idle core along with whichever resources it is currently assigned for
early execution of the selected job(s), without changing the resource allocation.* Once the current
segment ends, the core’s scheduler schedules jobs based on the scheduling table as before.

Resource allocation. Using Intel’s CAT [14], cache partitions can be assigned to CPUs via MSR
registers: we first assign to each CPU a distinct CLOS (class of service) register value, and then
associate with each CLOS a set of cache partitions (which must be contiguous), in the form of
a bitmask. As Rasco outputs only the number of partitions per CPU, we convert its output to a
bitmask value as follows: Suppose CPU i is allocated n; partitions. Then, we assign the bottom nj
bits to CPU 0, the next nq bits to CPU 1, and so on. Since Rasco keeps jobs pinned to the same core
between segments, this strategy helps improve cache locality, preserving as many warm cache
partitions as possible under dynamic resource allocation.

MemGuard [29] allocates memory bandwidth budget by using hardware performance counters
to monitor L3 cache misses—as a proxy for bandwidth usage-on each CPU during each period. If a
CPU exceeds its cache miss budget, MemGuard throttles it by running a memguard thread that
spins until the next replenishment period. Since this thread must run at the highest priority, which
is infeasible in LITMUSRT, we instead set a special throttled bit on the CPU and trigger a scheduler
invocation. We extended the scheduler to detect this bit and run our custom throttle thread that
spins until the bit is cleared, after which normal scheduling logic resumes.

6.2 Experimental Setup

Platform. We ran our prototype on a CAT-enabled Intel Xeon E5-2683 v4 processor with 16 cores,
40MB 20-way set-associative shared L3 cache, and 3 single-channel 16GB PC-2400 DDR4 DRAMs.
The shared cache and memory bandwidth are divided into N, = Ny, = 20 partitions each. We
used m = 4 cores for our experiments. We disabled cache prefetching and CPU hyperthreading.

Tasksets. We used the same benchmarks, profiling technique, multi-phase model construction, and
taskset generation as presented in Sections 3.1, 3.5, and 5, respectively. We generated 100 tasksets
between utilization 0.2 and 5.0, at steps of 0.2. For each taskset, we applied Rasco algorithm to
compute the static schedule, which was then provided as input to the Rasco runtime scheduler.

6.3 Runtime Overhead Evaluation and Overhead Accounting in Rasco Algorithm

Direct runtime overheads. We measured the direct overheads of our prototype through a series
of microbenchmark experiments. Each taskset was executed on the experimental cores using the
Rasco runtime scheduler for one minute, covering at least one full hyper-period. During each run,
at each scheduler invocation—triggered by Rasco’s timer interrupt handler at a decision point or
by preemption from the underlying Linux scheduler—we recorded the time taken by the scheduler
to perform all scheduling and resource allocation operations. The results are shown in Table 1.

In Table 1, “Rasco” refers to the overhead incurred by the core scheduling logics (i.e., the time
required to look up the scheduling table and to schedule tasks). “Resource Allocation” denotes the
time needed to configure the new cache and memory bandwidth partitions for all CPUs. “Under-
run Handler” represents the overhead for performing work-stealing when a job finishes early.

*Although the selected job might execute under a different resource budget from its intended one, any work done during
this work-stealing interval merely reduces its total amount of work and thus has no adverse effect. Each job is guaranteed
to receive (at least) the resources determined by the static schedule for sufficient time and in the correct order.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:24 A. Eisenklam et al.

Table 1. Measured Direct Runtime Overheads of RAasco Prototype Over All Utilizations

Overhead Type |# Observations | Min (ps) | Mean (pus) | 95th (us) | 99th (ps) | Max (ps)
Rasco 14,536,633 0.02 0.03 0.04 0.05 18.10
Resource Allocation 84,656 1.66 2.53 4.29 5.80 23.30
Under-run Handler 13,182,104 0.02 0.12 0.38 0.69 22.16
Complete Prototype 18,782,307 0.56 2.33 4.92 6.55 61.45

Table 2. Time to Fill a 2MB L3 Cache Partition by Memory Bandwidth Budget (f,,, - 72 MB/s)

Pow 2 4 6 8 10 [12 [14 [16 | 18 | 20
Mean (ms) | 0.145 | 0.085 | 0.099 | 0.087 | 0.141 | 0.146 | 0.127 | 0.122 | 0.169 | 0.119
Max (ms) | 1.134 | 0.395 | 0.383 | 0.474 | 0.818 | 0.775 | 0.819 | 0.818 | 0.729 | 0.591

Finally, “Complete Prototype” reports the total end-to-end overhead per scheduler invocation of
our prototype, summing all of the above overhead components. Overall, we observe that the total
scheduling and resource allocation overheads are very small, at only 2.33 microseconds on average,
including the cost of work-stealing (which is not required by Rasco).

Indirect cache-related overheads caused by preemption and dynamic resource allocation.
In addition to direct overheads, we also quantified the indirect cache-related overheads caused by
preemption and the transient effects of dynamic resource reconfiguration on execution rate (c.f.
Figure 4), both of which are workload- and resource-dependent. These overheads occur at decision
points, either when a job resumes execution after being preempted or when its physical cache
partitions are reallocated. They represent the maximum time required by a job to refill its useful
cache content that was evicted by other jobs while it was preempted or that was on a cache partition
that has been reassigned to other jobs. Since Rasco controls the cache and memory bandwidth
partitions assigned to a job at each decision point, we can upper bound this delay with relative
precision for each workload under each possible resource budget. For each benchmark program,
we determined its working set size (WSS)—in terms of the number of cache partitions—and the
refill cost for one cache partition under each memory bandwidth budget. The maximum cache-refill
overhead incurred by a job under a given budget of (f_,, fpw) can then be safely estimated by
multiplying the refill cost for one cache partition under the bandwidth budget of f,, partitions by
the maximum number of cache partitions to refill, i.e., the minimum of its WSS and f,.

To bound a program’s WSS, we allocated to it the maximum memory bandwidth, then identified
the number of cache partitions at which the program’s execution time “levels off”, i.e., no longer
benefits from additional cache partitions. To estimate the maximum refill cost per cache partition
under a given memory bandwidth budget f,,, we implemented a synthetic benchmark that accesses
a 2MB (the size of one cache partition on our platform) heap-allocated array. This benchmark
performs a variety of read and write operations, including sequential, deterministic random, and
strided memory accesses. We executed the benchmark twice back-to-back: the first execution with
a cold cache, and the second with a warm cache. We measured the time taken by each execution and
computed their difference, which indicates the time required to refill one cache partition. For each
bandwidth budget, we repeated the above measurement over 100 runs, and recorded the maximum
time required to fill one cache partition under that bandwidth budget. Table 2 shows sample results.

Incorporating runtime overheads into Rasco algorithm. Direct runtime overheads can be
incorporated into the Rasco algorithm by inserting the maximum total end-to-end overhead per
scheduler invocation (i.e., “Complete Prototype” overhead, measured at < 61.45s) as a delay on
each core after each decision point. Indirect overheads can be accounted for in the static schedule

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:25

at decision points where a job resumes after preemption or experiences a change in its physical
cache partitions—both cases are identifiable from our static schedule and deterministic policy for
mapping physical cache partitions to cores (c.f. Section 6.1). To ensure safe overhead accounting, we
make no assumption about the memory layout of the program within its cache partitions. Instead,
we conservatively assume that a job loses its cache content whenever its physical partitions are
reallocated—even if some of its original partitions are retained. By adding the maximum overhead
for cache refill as a delay, the job’s worst-case instruction rate under the new resource allocation
is guaranteed to hold after this delay. Finally, we enforce a minimum segment length (equal
to the worst-case sum of the direct and indirect overheads) to ensure that the resource budget
is only ever reconfigured to execute useful work. By explicitly accounting for both direct and
indirect overheads, Rasco produces an overhead-aware schedule that ensures timing guarantees
in practice.

Overall effect of overhead accounting. To eval-
uate the end-to-end impact of these overheads, we ~"" 2% overhead
computed a new overhead-aware schedule for each
generated taskset in Section 6.2 and calculated the
percentage increase in CPU utilization compared to
the original schedule. Figure 13 shows the results.
Notably, under the overhead-aware Rasco, all but 9
of the 2,500 tasksets evaluated incur less than a 2% R S T B
increase in utilization. Interestingly, in some cases, % Utilization Increase

the utilization actually decreases. This is because the
overhead-aware implementation of Rasco accounts
for the job-level overheads as it makes resource allo-
cation and scheduling decisions. Since the measured overheads are relatively small, the compounding
effects of different resource allocation/scheduling decisions made under the overhead-aware algo-
rithm can, in some cases, outweigh the costs of the overheads themselves.

=
=3
=3
=]

Tasksets out of 2500

Fig. 13. Percent utilization increase: overhead-
aware vs. standard Rasco.

6.4 Experimental Evaluation: Schedulability in Theory vs. in Practice

To evaluate the safety of the overhead-aware Rasco algorithm and its analysis, we conducted
experiments by running the generated tasksets on our experimental platform under the Rasco
runtime scheduler. The scheduler schedules each taskset based on its overhead-aware schedule
(computed earlier). Each taskset was executed for one hyper-period, lasting at most 1 minute.
During each run, we recorded the job completion times and determined their schedulability.
Figure 14 shows the percentage of schedulable
tasksets observed experimentally, compared to those
predicted through numerical analysis, across all ac-
tual taskset utilizations. The actual utilization of
a taskset is defined as the total execution time of
all its jobs in the static schedule, divided by its
hyper-period. Notably, the percentage of schedu-
lable tasksets observed experimentally is always
equal to or greater than the theoretical results. Fur-
thermore, any taskset deemed schedulable by Rasco Fig. 14. Schedulability for overhead-aware Rasco:
theoretical analysis was also schedulable experimen- experimental results vs. theoretical prediction.
tally, and we observed no overruns. These results
confirm that our overhead-aware algorithm achieves safe schedulability in practice.

20{ —— Theoretical Predictions
10 Experimental Results

% Tasksets Schedulable

1.0 2.0 3.0 4.0 5.0 6.0
Taskset Utilization

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

153:26 A. Eisenklam et al.

7 Conclusion

We presented Rasco, a co-design algorithm for taskgraphs that leverages resource-dependent
multi-phase task models to jointly optimize resource allocation and scheduling. Evaluations on real
benchmarks show that Rasco reduces latency, improves schedulability under high utilization, and
supports much heavier loads than prior work. We demonstrated its practical utility with a prototype
Rasco scheduler in an RTOS, evaluated runtime overheads, and integrated those overheads into the
Rasco algorithm. Experimental evaluation confirms that the overhead-aware schedule preserves
safe schedulability with minimal utilization cost. While we focused on taskgraphs, both the multi-
phase model and Rasco are broadly applicable, including to non-DAG applications.

References

[1] Jaume Abella, Carles Hernandez, Eduardo Quifiones, Francisco J. Cazorla, Philippa Ryan Conmy, Mikel Azkarate-
askasua, Jon Perez, Enrico Mezzetti, and Tullio Vardanega. 2015. WCET analysis methods: Pitfalls and challenges on
their trustworthiness. In SIES.

[2] Sylvain Arlot, Alain Celisse, and Zaid Harchaoui. 2019. A kernel multiple change-point algorithm via model selection.
Journal of Machine Learning Research 20, 162 (2019), 1-56.

[3] Sanjoy Baruah. 2014. Improved multiprocessor global schedulability analysis of sporadic DAG task systems. In ECRTS.
DOT : https://doi.org/10.1109/ECRTS.2014.22

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite: Characterization
and architectural implications. In PACT.

[5] John M. Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C. Devi, and James H. Anderson. 2006.
LITMUSKT: A testbed for empirically comparing real-time multiprocessor schedulers. In RTSS.

[6] Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio Buttazzo. 2020. A holistic memory contention
analysis for parallel real-time tasks under partitioned scheduling. In RTAS.

[7] Nan Chen, Shuai Zhao, Ian Gray, Alan Burns, Siyuan Ji, and Wanli Chang. 2023. Precise response time analysis for
multiple DAG tasks with intra-task priority assignment. In RTAS. DOI : https://doi.org/10.1109/RTAS58335.2023.00021

[8] Xiaotian Dai. 2022. dag-gen-rnd: A randomized multi-DAG task generator for scheduling and allocation research.
(March 2022). DOI : https://doi.org/10.5281/zenodo.6334205. Accessed: November 7, 2024.

[9] P. Emberson, R. Stafford, and R.I. Davis. 2010. Techniques for the synthesis of multiprocessor tasksets. In WATERS.

[10] Robert Gifford, Neeraj Gandhi, Linh Thi Xuan Phan, and Andreas Haeberlen. 2021. DNA: Dynamic resource allocation
for soft real-time multicore systems. In RTAS.

[11] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. 2009. Cache-aware scheduling and analysis for multicores. In EMSOFT.

[12] Qingqiang He, Nan Guan, Mingsong Lv, Xu Jiang, and Wanli Chang. 2022. Bounding the response time of DAG tasks
using long paths. In RTSS. DOI : https://doi.org/10.1109/RTSS55097.2022.00047

[13] Qingqgiang He, Xu Jiang, Nan Guan, and Zhishan Guo. 2019. Intra-task priority assignment in real-time scheduling of
DAG tasks on multi-cores. IEEE Transactions on Parallel and Distributed Systems 30, 10 (2019), 2283-2295. DOI : https:
//doi.org/10.1109/TPDS.2019.2910525

[14] Intel. 2015. Improving Real-Time Performance by Utilizing Cache Allocation Technology. (April 2015). White Paper.
Intel Corporation.

[15] Xu Jiang, Nan Guan, Xiang Long, and Han Wan. 2020. Decomposition-based real-time scheduling of parallel tasks on
multicores platforms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 10 (2020),
2319-2332. DOI : https://doi.org/10.1109/TCAD.2019.2937820

[16] Hyoseung Kim and Ragunathan (Raj) Rajkumar. 2016. Real-time cache management for multi-core virtualization. In
EMSOFT.

[17] Jakob Rosen, Alexandru Andrei, Petru Eles, and Zebo Peng. 2007. Bus access optimization for predictable implemen-
tation of real-time applications on multiprocessor systems-on-chip. In RTSS.

[18] Abusayeed Saifullah, Sezana Fahmida, Venkata P. Modekurthy, Nathan Fisher, and Zhishan Guo. 2020. CPU energy-
aware parallel real-time scheduling. In ECRTS.

[19] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill. 2014. Parallel
real-time scheduling of DAGs. IEEE Transactions on Parallel and Distributed Systems 25, 12 (2014), 3242-3252.

[20] Junjie Shi, Mario Giinzel, Niklas Ueter, Georg von der Briiggen, and Jian-Jia Chen. 2024. DAG scheduling with
execution groups. In RTAS.

[21] Bingi Sun, Mirco Theile, Ziyuan Qin, Daniele Bernardini, Debayan Roy, Andrea Bastoni, and Marco Caccamo. 2024.
Edge generation scheduling for DAG tasks using deep reinforcement learning. IEEE Transactions on Computers 73, 4
(2024), 1034-1047. DOI : https://doi.org/10.1109/TC.2024.3350243

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

https://doi.org/10.1109/ECRTS.2014.22
https://doi.org/10.1109/RTAS58335.2023.00021
https://doi.org/10.5281/zenodo.6334205
https://doi.org/10.1109/RTSS55097.2022.00047
https://doi.org/10.1109/TPDS.2019.2910525
https://doi.org/10.1109/TPDS.2019.2910525
https://doi.org/10.1109/TCAD.2019.2937820
https://doi.org/10.1109/TC.2024.3350243

Rasco: Resource Allocation and Scheduling Co-design for DAG Applications on Multicore 153:27

[22] Corey Tessler, Prashant Modekurthy, Nathan Fisher, Abusayeed Saifullah, and Alleyn Murphy. 2023. Co-located
parallel scheduling of threads to optimize cache sharing. In RTSS.

[23] Charles Truong, Laurent Oudre, and Nicolas Vayatis. 2020. Selective review of offline change point detection methods.
Signal Processing 167, C (2020), 107299.

[24] Micaela Verucchi, Ignacio Safiudo Olmedo, and Marko Bertogna. 2023. A survey on real-time DAG scheduling,
revisiting the global-partitioned infinity war. Real Time Systems 59, 3 (2023), 479-530.

[25] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. 1995. The SPLASH-2
programs: Characterization and methodological considerations. In ISCA.

[26] Meng Xu, Robert Gifford, and Linh Phan. 2019. Holistic multi-resource allocation for multicore real-time virtualization.
In DAC.

[27] Meng Xu, Linh Thi Xuan Phan, H. Choi, Y. Lin, H. Li, C. Lu, and Insup Lee. 2019. Holistic resource allocation for
multicore real-time systems. In RTAS.

[28] Zijin Xu, Yuanhai Zhang, Shuai Zhao, Gang Chen, Haoyu Luo, and Kai Huang. 2023. DRL-based task scheduling and
shared resource allocation for multi-core real-time systems. In ICITES 2023.

[29] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. 2016. Memory bandwidth management for
efficient performance isolation in multi-core platforms. IEEE Transactions on Computers 65, 2 (Feb 2016), 562-576.

[30] Shuai Zhao, Xiaotian Dai, and Iain Bate. 2022. DAG scheduling and analysis on multi-core systems by modelling
parallelism and dependency. IEEE Transactions on Parallel and Distributed Systems 33, 12 (2022), 4019-4038. DOI : https:
//doi.org/10.1109/TPDS.2022.3177046

[31] Shuai Zhao, Xiaotian Dai, Iain Bate, Alan Burns, and Wanli Chang. 2020. DAG scheduling and analysis on multiproces-
sor systems: Exploitation of parallelism and dependency. In RTSS. DOI : https://doi.org/10.1109/RTSS49844.2020.00022

[32] Shuai Zhao, Xiaotian Dai, Benjamin Lesage, and Iain Bate. 2023. Cache-aware allocation of parallel jobs on multi-cores
based on learned recency. In RTNS.

Received 10 August 2025; revised 10 August 2025; accepted 11 August 2025

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 153. Publication date: September 2025.

https://doi.org/10.1109/TPDS.2022.3177046
https://doi.org/10.1109/TPDS.2022.3177046
https://doi.org/10.1109/RTSS49844.2020.00022

	1 Introduction
	2 Related Work
	3 Resource-Dependent Multi-Phase Modeling of Real-Time Tasks
	3.1 Profiling of Real-Time Workloads on Multicore
	3.2 Results and Discussions: The Case for Phase-Based Resource Allocation
	3.3 Challenges of Achieving Timing Guarantees Under Dynamic Resource Allocation
	3.4 Resource-Dependent Multi-Phase Model for Real-Time Tasks on Multicore
	3.5 Constructing Multi-Phase Models

	4 Resource-Allocation and Scheduling Co-Design
	4.1 Problem Statement
	4.2 Overview of Rasco Co-Design Algorithm
	4.3 Computing Base Resource Budgets and Initial Deadlines
	4.4 Rasco Algorithm Details
	4.5 Termination and Complexity Analysis

	5 Numerical Evaluation
	6 Prototype, Runtime Overheads, and Experimental Evaluation
	6.1 Rasco Runtime Scheduler Prototype
	6.2 Experimental Setup
	6.3 Runtime Overhead Evaluation and Overhead Accounting in Rasco Algorithm
	6.4 Experimental Evaluation: Schedulability in Theory vs. in Practice

	7 Conclusion
	References

